domingo, 13 de diciembre de 2015

Semana del 14 al 18 Diciembre 2015

BLOQUE III: Un modelo para describir la estructura de la materia

CARACTERÍSTICAS DE LOS MODELOS EN LA CIENCIA

¿QUÉ ES UN MODELO?

Representación abstracta, conceptual, gráfica, visual, física o matemática de fenómenos, sistemas o procesos con el fin u objetivo de analizarlos, describirlos, explicarlos, simularlos, controlarlos y predecirlos.

CARACTERÍSTICAS:

*El modelo en la ciencia, es un objeto que ayuda a comprender mejor lo que se investiga, para que sea más fácil, observarlo e investigarlo.

* El modelo representa una teoría de la realidad, tratando de hacer ver, lo que comprende al fenómeno para poderlo estudiar.

* La dimensión de un modelo, es importante para su visibilidad ver mejor los detalles, problemas o causas que se necesitan investigar.


* El modelo, también tiene que servir para ilustrar una actividad de experimentación.

IMPORTANCIA:


Como ya sabemos los modelos son representaciones estructurales; así que podemos decir que tienen mucha importancia ya que a través de estos se intenta explicar los sucesos o fenómenos en la vida para un mejor entendimiento así como también poder predecir su efecto o acción.

MATERIA CONTINUA Y DISCONTINUA

UN POCO DE HISTORIA
Desde la antigüedad los científicos debatían acerca de la naturaleza de la materia: ¿los cuerpos estaban constituidos de un material continuo o estaban formados por pequeños ladrillos de material? Los defensores de la primera corriente sostenían que la materia era continua y que no había espacios vacíos. Según ellos, una manzana se podría dividir tantas veces como se quisiera y siempre tendríamos un trozo de manzana. Sus opositores eran los atomistas que sostenían que llegado cierto tamaño, la materia ya no sería divisible. Según los atomistas, al dividir un trozo de manzana una y otra vez, llegaríamos a dividir un trozo que ya no tendría las características de la manzana sino que sería uno de esos elementos que forman parte de todos los materiales. Y estos elementos serían indivisibles.

MATERIA CONTINUA:

Se dice que la materia es continua cuando al dividirla en partes cada vez mas pequeñas estas no cambiaran sus propiedades.
Materia que puede dividirse sin límite hasta quedar en partes cada vez más pequeñas.

MATERIA DISCONTINUA:
Si la materia continua dice que al dividirse en trozos mas pequeños estos siguen teniendo las mismas propiedades entonces podemos decir que la materia discontinua es aquella que una vez llegando al átomo cuando se divide, esta ya no podrá dividirse mas.

DEMÓCRITO:
Filósofo griego, defensor de la corriente atomista. Probablemente discípulo de Lucipo, también atomista. Sostenía que todo el material estaba hecho del mismo elemento y que las diferencias entre las distintas sustancias se debían al tamaño y distribución de esos átomos en cada cuerpo. También propuso que la luz era una emanación de átomos que llevaban la imagen del cuerpo iluminado. 
Para él los átomos eran indivisibles y eternos. Por eso sostenía que no había muerte ni nacimiento sino transformaciones, uniones y separaciones de átomos.

ARISTÓTELES:
Aristóteles creía que toda la materia existente en el universo estaba compuesta por cuatro elementos básicos: tierra, agua, fuego y aire. Estos elementos sufrían la acción de la gravedad que son la tendencia de la tierra y del agua a hundirse y la ligereza que es la tendencia del aire y del fuego a ascender.

También creía que la materia era continua, es decir, que cualquier clase de materia podía dividirse sin límite hasta quedar en partes cada vez más pequeñas. Sin embargo, algunos sabios griegos como Demócrito, sostenían que la materia era discontinua  y que estaba constituida por átomos.

NEWTON:
Newton decía que la materia era también en sí misma, por sí misma, desde sí misma, independiente del Tiempo y del Espacio Absolutos. Todo cuerpo por tener materia, tenía masa inercial; pero también tenía masa gravitacional.
Newton creyó además que la Materia era continua y que el Cosmos era infinito, con infinitud de astros, desplegados en el Espacio y en el Tiempo Absolutos. Un Universo regido por una única ley: la Gravitación Universal.


APORTACIONES DE CLAUSIUS:

Formuló la ley que le hizo mundialmente famoso, conocida hoy en día como el segundo principio de la termodinámica: "El calor no puede pasar nunca por sí mismo de un cuerpo más frío a otro más caliente".

Este principio, también llamado principio de la entropía, concepto que él mismo introdujo y definió un poco más tarde, en 1865, y que afirma: en la práctica técnica el proceso de paso del calor de un cuerpo a una temperatura superior a otro que está a una temperatura más baja, no puede realizarse de manera inversa sin que se produzcan como consecuencia de ello modificaciones permanentes en el entorno. De ello se deduce que la energía liberada cuando la temperatura desciende de una valor "Ta" a otro "Tb" no se transforma completamente en energía mecánica, el rendimiento energético de esta transformación es como máximo de 1-Tb/Ta. Así se solucionaba un problema latente entre los científicos de su tiempo, que teorizaban sobre si era posible o no convertir totalmente la energía calorífica en trabajo.



APORTACIONES DE MAXWELL:

Maxwell fue un brillante científico y su primer gran aporte a la ciencia fue la descripción de la naturaleza de los anillos de Saturno.
Investigó sobre la visión de los colores, los principios de la termodinámica e incluso acerca de la elasticidad.
También estudió el calor y el movimiento de los gases, para formular la teoría cinética de los gases de Maxwell-Boltzmann, que muestra la relación entre temperatura, calor y movimiento molecular. Además introdujo las ideas estadísticas en la mecánica clásica.

APORTACIONES DE BOLTZMAN:

Físico austriaco cuyas aportaciones en el campo de la teoría cinética de gases marcaron el desarrollo posterior de diversos campos de la Física. Su novedosa aplicación de métodos probabilísticos a la mecánica permitió una fundamentación teórica de las leyes fenomenológicas de la termodinámica y marcó el camino para el desarrollo posterior de la termodinámica del no equilibrio.

IDEAS EN LA HISTORIA ACERCA DE LA NATURALEZA CONTINUA Y DESCONTINUA





domingo, 6 de diciembre de 2015

domingo, 29 de noviembre de 2015

Semana el 30 Nov al 4 Dic 2015






Te dejo los siguientes videos  sobre energía potencial y su conservación para que los hagas y ganes participaciones. Suerte!. Fecha límite de entrega: Viernes 4 de Dic






















sábado, 21 de noviembre de 2015

Semana del 23 al 27 de Noviembre 2015

Te dejo el siguiente link para tu mejor comprensión del concepto de energía. Realiza las actividades interactivas, imprímelas y preséntalas en clase para ganarte participaciones; también podrá ser considerado para tu TRABAJO DE RECUPERACIÓN.


Objetivos
Imprimir
En esta quincena aprenderás a:
  • Conocer las distintas fuentes de energía de las que dispone el ser humano.
  • Conocer las distintas transformaciones de la energía.
  • Conocer los efectos que causa el uso de la energía sobre el medio ambiente, así como promover un uso racional de la energía.
La energía y el medio ambiente
1. La energía en la vida cotidiana
Conversión de la energía
La energía en bruto se convierte en energía utilizable en su destino final en diversas instalaciones como las refinerías de petróleo, las centrales térmicas de gas, de carbón o de fuel y las centrales nucleares.

La energía final, apta para ser utilizada en todas las aplicaciones que demanda nuestra sociedad, debe ser transportada mediante complejas redes de distribución a millones de hogares, millones de vehículos, decenas de miles de industrias, etc.

Camiones cisterna, furgonetas de reparto de bombonas, tendidos eléctricos y tuberías son algunos de los caminos que sigue la energía final hasta su destino.
 
Ampliación
1. La energía en la vida cotidiana
Uso de la energía
Los usos de la energía  son tan variados como las actividades humanas.

Necesitamos energía para la industria, para el transporte por carretera, ferrocarril, marítimo o aéreo, para iluminar las calles, oficinas, comercios y hogares, para los electrodomésticos que nos hacen la vida más fácil, para los aparatos multimedia, para la agricultura, para las telecomunicaciones, para mandar los cohetes al espacio...
Es difícil imaginar nuestra vida cotidiana sin disponer de energía.

En realidad no necesitamos “energía”, sino el trabajo que nos presta.
Actividades interactivas


domingo, 15 de noviembre de 2015

Semana del 17 al 20 de Noviembre 2015

Isaac Newton y Su gran aporte a la Ciencia


Nació el 4 de enero de 1643 en Woolsthorpe, LincoInshire, Inglaterra. En esa fecha el calendario usado era el juliano y correspondía al 25 de diciembre de 1642, día de la Navidad. El parto fue prematuro aparentemente y nació tan pequeño que nadie pensó que lograría vivir mucho tiempo. Su vida corrió peligro por lo menos una semana, fue bautizado recién el 1 de enero de 1643, 12 de enero en el calendario gregoriano.
La casa donde nació y vivió su juventud se ubica en el lado oeste del valle del rió Witham, más abajo de la meseta de kesteven, en dirección a la ciudad de Grantham. Es de piedra caliza gris, el mismo material que se encuentra en la meseta. Tiene forma de una letra T gruesa en cuyo trazo más largo se encuentra la cocina y el vestíbulo y la sala se encuentra en la unión de los dos trazos. Su entrada es descentrada y se ubica entre el vestíbulo y la sala y se orienta hacia las escaleras que conducen a dos dormitorios del piso superior.
Sus padres fueron Isaac Newton y Hannah Ayscough, dos campesinos puritanos. No llegó a conocer a su padre, pues había muerto en octubre de 1642. Cuando su madre volvió a casarse con Barnabas Smith que no tenía intención de cargar a un niño de tres años, lo dejó a cargo de su abuela, con quien vivió hasta la muerte de su padrastro en 1653. Este fue posiblemente un hecho traumático para Isaac, constituía la perdida de la madre no habiendo conocido al padre. A su abuela nunca le dedicó un recuerdo cariñoso y hasta su muerte paso desapercibida. Lo mismo ocurrió con el abuelo que pareció no existir hasta que se descubrió que también estaba presente en la casa y correspondió al afecto de Newton de la misma forma, lo desheredó.
Primeras Contribuciones
Desde finales de 1664 trabajó intensamente en diferentes problemas matemáticos. Abordó entonces el teorema del binomio, a partir de los trabajos de John Wallis, y desarrolló un método propio denominado calculo de fluxiones. Poco después regresó a la granja familiar a causa de una epidemia de peste bubónica.
Retirado con su familia durante los años 1665-1666, conoció un período muy intenso de descubrimientos, entre los que destaca la ley del inverso del cuadrado de la gravitación, su desarrollo de las bases de la mecánica clásica, la formalización del método de fluxiones y la generalización del teorema del binomio, poniendo además de manifiesto la naturaleza física de los colores. Sin embargo, guardaría silencio durante mucho tiempo sobre sus descubrimientos ante el temor a las críticas y el robo de sus ideas. En 1667 reanudó sus estudios en Cambridge.
 Desarrollo del Calculo
De 1667 a 1669 emprendió investigaciones sobre óptica y fue elegido fellow del Trinity College. En 1669 su mentor, Isaac Barrow, renunció a su Cátedra Lucasiana  de matemática, puesto en el que Newton le sucedería hasta 1696. El mismo año envió a John Collins , por medio de Barrow, su "Analysis per aequationes número terminorum infinitos". Para Newton, este manuscrito representa la introducción a un potente método general, que desarrollaría más tarde: su calculo diferencial  e integral.
Newton había descubierto los principios de su cálculo diferencial e integral hacia 1665-1666 y, durante el decenio siguiente, elaboró al menos tres enfoques diferentes de su nuevo análisis.
Newton y Leibniz protagonizaron una agria polémica sobre la autoría del desarrollo de esta rama de la matemática. Los historiadores de la ciencia consideran que ambos desarrollaron el cálculo independientemente, si bien la notación de Leibniz era mejor y la formulación de Newton se aplicaba mejor a problemas prácticos. La polémica dividió aún más a los matemáticos británicos y continentales, sin embargo esta separación no fue tan profunda como para que Newton y Leibniz dejaran de intercambiar resultados.
Newton abordó el desarrollo del cálculo a partir de la geometría analítica desarrollando un enfoque geométrico y analítico de las derivadas matemáticas aplicadas sobre curvas definidas a través de ecuaciones. Newton también buscaba cómo cuadrar distintas curvas, y la relación entre la cuadratura y la teoría de tangentes. Después de los estudios de Roberval, Newton se percató de que el método de tangentes podía utilizarse para obtener las velocidades instantáneas de una trayectoria conocida. En sus primeras investigaciones Newton lidia únicamente con problemas geométricos, como encontrar tangentes, curvaturas y áreas utilizando como base matemática la geometría analítica  de Descartes. No obstante, con el afán de separar su teoría de la de Descartes, comenzó a trabajar únicamente con las ecuaciones y sus variables sin necesidad de recurrir al sistema cartesiano.
Trabajos sobre la Luz
Entre 1670 y 1672 trabajó intensamente en problemas relacionados con la óptica y la naturaleza de la luz. Newton demostró que la luz blanca estaba formada por una banda de colores (rojo, naranja, amarillo, verde, cían, azul y violeta) que podían separarse pormedio de un prisma. Como consecuencia de estos trabajos concluyó que cualquier telescopio refractor sufriría de un tipo de aberración conocida en la actualidad como aberración cromática que consiste en la dispersión de la luz en diferentes colores al atravesar una lente. Para evitar este problema inventó un telescopio reflector(conocido como telescopio newtoniano).
Sus experimentos sobre la naturaleza de la luz le llevaron a formular su teoría general sobre la misma que, según él, está formada por corpúsculos y se propaga en línea recta y no por medio de ondas. El libro en que expuso esta teoría fue severamente criticado por la mayor parte  sus contemporáneos, entre ellos Hooke (1638-1703) y Huygens, quienes sostenían ideas diferentes defendido una naturaleza ondulatoria. Estas críticas provocaron su recelo por las publicaciones, por lo que se retiró a la soledad de su estudio en Cambridge.
En 1704 Newton escribió su obra más importante sobre óptica, Optick, en la que exponía sus teorías anteriores y la naturaleza corpuscular de la luz, así como un estudio detallado sobre fenómenos como la refracción, la reflexión y la dispersión de la luz.
Aunque sus ideas acerca de la naturaleza corpuscular de la luz pronto fueron desacreditadas en favor de la teoría ondulatoria, los científicos actuales han llegado a la conclusión (gracias a los trabajos de Max Planck y Albert Einstein) de que la luz tiene una naturaleza dual: es onda y corpúsculo al mismo tiempo. Esta es la base en la cual se apoya toda la mecánica cuantica.
La ley de la Gravitación Universal
Bernard Cohen afirma que “El momento culminante de la Revolución Científica fue el descubrimiento realizado por Isaac Newton de la Ley de la gravitación universal.” Con una simple ley, Newton dio a entender los fenómenos físicos más importantes del universo observable, explicando las tres leyes de Kepler. La ley de la gravitación universal descubierta por Newton se escribe
\vec F = -G \frac {m_{1}m_{2}} {r^{2}}\vec u,
donde F es la fuerza, G es una constante que determina la intensidad de la fuerza y que sería medida años más tarde por Henry Cavendish en su célebre experimento de balanza de torsión , m1 y m2 son las masas de dos cuerpos que se atraen entre sí y r es la distancia entre ambos cuerpos, siendo \vec u el vector unitario que indica la dirección del movimiento (si bien existe cierta polémica acerca de que Cavendish hubiera medido realmente G, pues algunos estudiosos afirman que simplemente midió la masa terrestre).
La ley de gravitación universal nació en 1685 como culminación de una serie de estudios y trabajos iniciados mucho antes. En 1679 Robert Hooke introdujo a Newton en el problema de analizar una trayectoria curva. Cuando Hooke se convirtió en secretario de la Royal Society quiso entablar una correspondencia filosófica con Newton. En su primera carta planteó dos cuestiones que interesarían profundamente a Newton. Hasta entonces científicos y filósofos como Descartes y Huygens analizaban el movimiento curvilíneo con la fuerza centrifuga. Hooke, sin embargo, proponía "componer los movimientos celestes de los planetas a partir de un movimiento rectilíneo a lo largo de la tangente y un movimiento atractivo, hacia el cuerpo central." Sugiere que la fuerza centrípeta hacia el Sol varía en razón inversa al cuadrado de las distancias. Newton contesta que él nunca había oído hablar de esta hipótesis.
En otra carta de Hooke, escribe: “Nos queda ahora por conocer las propiedades de una línea curva... tomándole a todas las distancias en proporción cuadrática inversa.” En otras palabras, Hooke deseaba saber cuál es la curva resultante de un objeto al que se le imprime una fuerza inversa al cuadrado de la distancia. Hooke termina esa carta diciendo: “No dudo que usted, con su excelente método, encontrará fácilmente cuál ha de ser esta curva.”
En 1684 Newton informó a su amigo Edmund Halley de que había resuelto el problema de la fuerza inversamente proporcional al cuadrado de la distancia. Newton redactó estos cálculos en el tratado De Motu y los desarrolló amplia mente en el libro Philosophiae naturalis principia mathematica. Aunque muchos astrónomos no utilizaban las leyes de Kepler, Newton intuyó su gran importancia y las engrandeció demostrándolas a partir de su ley de gravitación universal.
Sin embargo, la gravitación universal es mucho más que una fuerza dirigida hacia el Sol. Es también un efecto de los planetas sobre el Sol y sobre todos los objetos del Universo. Newton intuyó fácilmente a partir de su tercera ley de la dinámica  que si un objeto atrae a un segundo objeto, este segundo también atrae al primero con la misma fuerza. Newton se percató de que el movimiento de los cuerpos celestes no podía ser regular. Afirmó: “los planetas ni se mueven exactamente en elipses, ni giran dos veces según la misma órbita”. Para Newton, ferviente religioso, la estabilidad de las órbitas de los planetas implicaba reajustes continuos sobre sus trayectorias impuestas por el poder divino.

JIMMY NEUTRON

"El movimiento es vida sino me muevo me muero"

APORTACIONES DE NEWTON

A continuación mostramos una lista de los principales descubrimientos e inventos que Newton aportó a la historia de la ciencia. Algunos de ellos, los marcados con un asterisco, serán ampliados en apartados posteriores.
Fuerza centrípeta: Del latín hacia el centro, es la fuerza resultante que causa de todo movimiento circular, dirigida hacia el centro y con una magnitud igual a , siendo el radio de la circunferencia instantánea que describe la trayectoria. Esta ley, aplicada al movimiento de la luna, pudo ser la inspiración a la ley del cuadrado de la distancia de la gravitación universal.
Descomposición de la luz en colores:* Explicó el fenómeno mediante una teoría corpuscular de a descomposición de la luz blanca en los diferentes colores del arco iris en pasar por prismas transparentes.

Gravitación universal:* Cuantificó y describió la atracción de los cuerpos por el simple hecho de tener masa.

Leyes de Kepler: Las demostró matemáticamente a partir de su teoría de la gravitación universal. Las leyes de Kepler sobre las órbitas de los planetas afirman que: 1.- las órbitas son elípticas, con el sol en un foco de la misma; 2.- el radio vector que une el planeta con el sol barre áreas iguales en tiempos iguales; 3.- el cubo del semieje mayor de la elipse orbital de cada planeta es proporcional al cuadrado del período que tarda el planeta.

Hipótesis corpuscular de la luz: Intentó explicar diversos aspectos de la propagación de la luz suponiendo que estaba formada por pequeños proyectiles, corpúsculos. Ésta fue la teoría dominante hasta los experimentos de doble rendija de Young.

Mecánica newtoniana:* La mecánica es l parte de la física que se encarga de estudiar el movimiento de los cuerpos y sus causas. La formulación newtoniana es la más sencilla y práctica en la mayoría de situaciones en que no intervienen correcciones relativistas y cuánticas.

Óptica: Hizo diferentes adelantos en óptica, entre los que destaca el telescopio de reflexión. Probablemente el «Óptica» sea el segundo libro en importancia que publicó a lo largo de su vida.

Leyes del movimiento:* Las tres leyes que fundamentan la mecánica de Newton fueron publicadas en su libro más importante, los «Principia».

3.2 Mecánica

La mecánica física (estudio del movimiento de la materia en el espacio, y de sus causas) tiene millones de años de antigüedad, aunque los adelantos más importantes no se produjeron hasta a época de Newton.
El concepto del movimiento anterior a Newton, procedente de los antiguos griegos, dependía de la creencia sobre que la tierra era el centro inamovible y fijo del universo. Los objetos tendían a situarse en su nivel natural: tierra, agua, aire y fuego.

Igualmente, el desarrollo de la mecánica newtoniana tiende a comprender la definición y el análisis del movimiento, teniendo en cuenta que las deducciones han de ser aplicadas también en la astronomía para la descripción del movimiento de planetas y astros. Ésto, por primera vez, unifica la física de lo terrestre y lo celestial.

Newton descompuso el movimiento de los cuerpos en dos contribuciones: el movimiento natural y el artificial. El movimiento natural es aquél causado por la gravedad, que tiende a hacer que los objetos se acerquen mutuamente. El movimiento artificial es aquél que está causado por la aplicación de otras fuerzas en el presente o en instantes pasados. El resultado es una línea curvada que puede calcularse a partir de la aplicación de las leyes de la mecánica de Newton.

Newton demostró empíricamente la hipótesi de Galileo sobre la caída de cuerpos en un tubo de vacío, en que la caída de los mismos (el movimiento natural de la materia) es independiente de la masa.

3.3 Teoría de la luz. Newton realizó el conocido experimento de doble refracción mediante prismas de vidrio transparente con caras no paralelas. En una primera etapa, el experimento se realiza con tan solo un prisma. Un haz de luz blanca que entra a un cuarto oscuro traviesa un trozo de cristal con caras planas no paralelas y sufre una doble refracción al entrar y salir del mismo. La luz se recoge con una pantalla. El resultado que se obtiene es un haz que contiene todos los colores naturales separados: el rojo, naranja, amarillo, verde, azul, añil y violeta.
Newton no creía en las afirmaciones de sus coetáneos sobre este fenómeno, que interpretaban que el color se formaba en el prisma, sino que supuso que la luz blanca era una mezcla de haces de los siete colores puros. Cada uno de estos haces posee un grado propio y diferente de refracción en el vidrio. Esta hipótesis también explica la formación del propio arco iris, ya que la luz que se refracta en las gotas de lluvia puede separarse de una forma parecida a la que hemos observado en la figura 1. Para intentar demostrar esta hipótesis, Newton realizó dos experimentos más.

El primer experimento consiste en añadir un segundo prisma, invertido respecto al primero, de forma que el haz de luz se vuelve a reunir para formar de nuevo un haz blanco, El segundo experimento es el disco de Newton, una ruleta que esta dividida en siete sectores, cada cual pintado con uno de los colores del arco iris. Al hacerlo girar a gran velocidad, la apariencia del disco es blanca.

Posteriormente, Newton quiso encontrar la explicación a la aparición de colores en los diferentes objetos cuando son iluminados por luz blanca. Cada substancia, argumentaba, posee una capacidad selectiva de absorción de cada color diferente. La parte no absorbida de la luz blanca es la única que llega a nuestros ojos, que la interpretan como si fuera una única luz con el color resultante de la combinación de las diferentes contribuciones de cada color natural.

Newton intentó demostrar esta explicación mediante un dispositivo experimental del tipo de la figura 2. Mediante una pantalla opaca con una ranura apropiada, se bloquean seis de los siete colores en los cuales se ha separado la luz al pasar por el primer prisma, dejando pasar tan solo uno de ellos. La luz restante pasa por el segundo prisma sin modificarse en absoluto, ya que en este caso tan sólo resta una de las componentes: el haz es homogéneo. Los objetos iluminados con esta luz serán negros si absorben este color en particular, o de ese mismo color en caso contrario. De esta forma, Newton demostró que el color de cada objeto depende de la iluminación y de la capacidad de absorción de cada color.

Disco de Newton. Trata de hacerlo y lo presentas para que como siempre que realizas un proyecto, te ganes participaciones.




erimentos, curiosidades, trucos, pasatiempos, en la versión web de este libro maravilloso.

Picture

Te dejo el siguiente link para que puedas hacer los experimentos que puedas  y ganar participaciones.






domingo, 8 de noviembre de 2015

Semana del 9 al 13 de Noviembre 2015

 TEMA 2: Efectos de las fuerzas en la Tierra y en el Universo
GRAVITACIÓN. REPRESENTACIÓN GRÁFICA DE LA ATRACCIÓN GRAVITACIONAL. RELACIÓN CON CAÍDA LIBRE Y PESO.

CONCEPTOS CLAVES:

ATRACCIÓN GRAVITACIONAL: Consecuencia de la interaccion de dos masas en una distancia especifica.

PESO: Fuerza que actúa sobre un cuerpo.

CAÍDA LIBRE: Movimiento de un cuerpo bajo la acción exclusiva de un campo gravitatorio.


RELACIÓN CON CAÍDA LIBRE

La gravitación se debe al campo gravitacional, que tiene energía potencial, todo campo es radial y su intensidad es mayor cerca del centro.
La caída libre es el desplazamiento de un objeto que está dentro del campo hacia el centro; y el peso de los objetos se debe a la aceleración con que el campo gravitacional jala al objeto, y disminuye conforme se aleja del centro.


REPRESENTACIÓN GRÁFICA DE LA ATRACCIÓN GRAVITACIONAL


FUERZA DE ATRACCIÓN ENTRE 2 CUERPOS ES DIRECTAMENTE PROPORCIONAL AL PRODUCTO DE SUS MASAS E INVERSAMENTE PROPORCIONAL AL CUADRADO DE LA DISTANCIA

Lo que matemáticamente se expresa como:

F= G m1  m2 / d2


 
La gravitación también conocida como gravedad es la fuerza de atracción mutua entre dos masas separadas por una determinada distancia.
 
A esto se le conoce como "Atracción Gravitacional"
 
La gravitación es una de las cuatro interacciones fundamentales.
Por efecto de la gravedad tenemos la sensación de peso.
La gravedad es una de las cuatro interacciones fundamentales observadas en la naturaleza. Origina los movimientos a gran escala que se observan en el universo: laórbita de la Luna alrededor de la Tierra, las órbitas de los planetas alrededor del Sol, etcétera. A escala cosmológica es la interacción dominante pues gobierna la mayoría de los fenómenos a gran escala (las otras tres interacciones fundamentales son predominantes a escalas más pequeñas).

 
El término gravedad se utiliza también para designar la intensidad del fenómeno gravitatorio en la superficie de los planetas o satélites. Isaac Newton fue el primero en exponer que es de la misma naturaleza la fuerza que hace que los objetos caigan con aceleración constante en la Tierra (gravedad terrestre) y la fuerza que mantiene en movimiento los planetas y las estrellas. Esta idea le llevó a formular la primera teoría general de la gravitación, la universalidad del fenómeno.Philosophiae Naturalis Principia Mathematica.
 
Según Newton, la gravedad sería una fuerza instantánea (es decir, cualquier cuerpo notaría inmediatamente si hay otro cuerpo, y sufriría su atracción) y actuaría a distancia, es decir, la intensidad de la fuerza dependería de algo (el otro cuerpo) que puede estar muy alejado, sin que haya contacto entre los cuerpos.
La ley formulada por Newton y que recibe el nombre de ley de la gravitación universal,afirma que la fuerza de atracción que experimentan dos cuerpos dotados de masa es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que los separa (ley de la inversa del cuadrado de la distancia). La ley incluye una constante de proporcionalidad (G) que recibe el nombre de constante de la gravitación universal y cuyo valor, determinado mediante experimentos muy precisos, es de:

6,670. 10-11 Nm²/kg².
 
 
2 conceptos muy importantes para entender las ideas de Newton son masa & peso:
Masa es cantidad de materia que tiene un cuerpo
 Peso es una fuerza que sí depende de la masa del planeta donde la medimos: en la Luna, un cuerpo pesa seis veces menos que en la Tierra, y en Júpiter, dos veces y media más (un kilogramo, que en la Tierra pesa un kilopondio, en Júpiter pesaría dos kilopondios y medio).
 
La atracción gravitacional es la consecuencia de la interacción de dos masas en una distancia especifica. Las grandes masas producen un efecto gravitatorio sobre las pequeñas, es así como un cuerpo celeste como el sol, es capaz de atraer y mantener con la ayuda de la fuerza de la inercia a los cuerpos celestes que tengan menor masa en un cierto radio de distancia. Al incrementar la distancia la fuerza de la gravedad va disminuyendo hasta que no permite sentir sus efectos, pero nuevamente estos tienen que ver con la relación de las masas.
 
La caída libre es el movimiento de un cuerpo bajo la influencia exclusiva de un campo gravitatorio.
En esta imagen el campo gravitatorio originado por la Tierra obliga al sujeto a caer hacia el suelo terrestre.
La atracción gravitacional origina que en la caída libre el cuerpo de mayor tamaño sea el que tenga influencia gravitacional sobre otro.
 



domingo, 1 de noviembre de 2015

Semana del 3 al 6 de Noviembre 2015



AVISO IMPORTANTE
A todos los alumnos del ISBF:
Podrán subir la calificación de la asignatura que ustedes elijan, el modo de hacerlo es leer el capítulo de un libro, un cuento, un artículo, de carácter científico y a partir de ello elaborar un resumen o ensayo a mano, también pueden ver una película y elaborar un guión.
Todo lo anterior con temas enfocados a la Ciencia y Tecnología.
Éste trabajo, de una cuartilla mínimo, deberá ser entregado (con buena presentación) al profesor de la asignatura en la que quieran mejorar, para hacerlo válido deberá tener la FIRMA de sus padres de familia.
Lo anterior se realizará con la finalidad de fomentar el hábito de lectura y de apoyarlos en sus calificaciones.
La lectura puede ser elegida por ustedes o por sus papás.
En el trabajo incluyan la leyenda "Trabajo realizado para mejorar la calificación de __________" (Anotan el nombre de la asignatura).
No olviden escribir su nombre, grupo y fecha.





Niños felices, escuela feliz, mundo feliz