sábado, 25 de marzo de 2017

Semana del 27 al 31 Marzo 2017

PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.
El principio de la conservación de la energía establece que el valor de la energía en un sistema sobre el cual no interactúa ningún otro no varía con el tiempo. Aplicando este principio a los sistemas termodinámicos se puede extraer la consecuencia de que el aumento de la cantidad de energía térmica en un sistema es igual a la suma del incremento de la energía interna del sistema y el trabajo.
A mediados del siglo XIX se realizaron los experimentos que demostraron la relación entre el calor y el trabajo. James Joule publicó en 1850 la obra El equivalente mecánico del calor, explicando los experimentos que llevó a cabo y que le permitieron demostrar que la energía producida por el trabajo tiene calor como resultado y puede medirse: existe una relación de equivalencia entre trabajo y calor. La energía suministrada como trabajo se transforma en otro tipo de energía, en calor.
Para sus pruebas ideó un aparato que consistía en un recipiente hermético con un eje rotatorio con ocho paletas que agitaban un líquido. El eje estaba conectado con poleas a dos pesos conocidos.  Al dejar caer los pesos, el eje giraba y movía las palas que, a su vez, agitaban el líquido del recipiente. Tras repetir veinte veces el mismo experimento, las conclusiones fueron:
1) El calor producido por la fricción es proporcional a la cantidad de trabajo mecánico existente
2) Es necesaria una fuerza mecánica equivalente a la caída de 772 libras desde la altura de un pie para aumentar en 1ºF la temperatura de una libra de agua




Principios de Conservación De la Energía

Monografias.com
El Principio de conservación de la energía indica que la energía no se crea ni se destruye; sólo se transforma de unas formas en otras. En estas transformaciones, la energía total permanece constante; es decir, la energía total es la misma antes y después de cada transformación.
En el caso de la energía mecánica se puede concluir que, en ausencia de rozamientos y sin intervención de ningún trabajo externo, la suma de las energías cinética y potencial permanece constante. Este fenómeno se conoce con el no En todos los casos donde actúen fuerzas conservativas, la energía mecánica total, es decir, la energía cinética más la energía potencial en cualquier instante de la trayectoria es la misma; por ejemplo, la fuerza gravitacional, pues en cualquier trabajo que realice un cuerpo contra la fuerza de gravedad de la Tierra, la energía se recuperará íntegramente cuando el cuerpo descienda.
Em = Ec + Ep
donde Em = energía mecánica total expresada en joules. Sustituyendo las expresiones de las energías:
Em = 1/2mv2 + mgh.
En resumen, "la energía existente en un sistema es una cantidad constante que no se crea ni se destruye, únicamente se transforma". Respecto de fuerzas no conservativas (por ejemplo la fricción) no podemos hablar de energía potencial; sin embargo, la conservación de la energía se mantiene en la forma:
Em = Ec + Q donde Q es ahora el calor disipado al ambiente. En este caso la EC disminuyesiempre y eventualmente el calor transporta la energía a la atmósfera.Principios de la Conservación de la Energía Mecánica
Monografias.com


Leer más: http://www.monografias.com/trabajos96/conservacion-energia/conservacion-energia.shtml#ixzz4cPOfw7ke




sábado, 11 de marzo de 2017

Semana del 13 al 17 Marzo 2017




LOS CAMBIOS DE ESTADO: GRÁFICAS DE CALENTAMIENTO Y ENFRIAMIENTO


La materia se encuentra habitualmente en tres estados de agregación: el sólido, el líquido y el gaseoso. Una misma sustancia aparece en uno u otro estado en función de las condiciones de presión y temperatura a las que se encuentre sometida, por lo que mediante la variación de estas se puede conseguir la transformación entre dos estados diferentes.
La forma más sencilla, o más evidente, de cambio de estado es la que tiene lugar por modificación de la temperatura, mediante intercambio de calor entre el sistema material y su entorno. Este proceso puede ocurrir en dos sentidos:
  • Por calentamiento: las sustancias sólidas pasan a estado líquido o gaseoso (cambios de estado progresivos).
  • Por enfriamiento, las sustancias gaseosas pasan a estado líquido o sólido (cambios de estado regresivos).
Según la teoría cinético-molecular, al aumentar la temperatura de una sustancia, se produce un incremento de la energía cinética media de sus partículas, por lo que estas adquieren mayor movilidad, venciendo las fuerzas de cohesión que existen en estado sólido y, en menor medida, en estado líquido, hasta llegar a ser despreciables en estado gaseoso. En sentido inverso, al disminuir la temperatura las partículas pierden movilidad y van dominando las interacciones atractivas que conducen a agrupaciones entre ellas y a estados de agregación cada vez más ordenados. Los cambios de estado pueden ocurrir, por tanto, de dos maneras entre cada uno de los estados físicos, denominándose, en cada caso, de la siguiente manera:
cambios_de_estado_de_una_susutancia_TCM.png
  • El cambio de estado sólido a estado líquido se denomina fusión. El proceso inverso se conoce como solidificación.
  • El cambio de estado líquido a estado gaseoso se denomina vaporización. El proceso inverso se llama condensación, aunque también licuación (o licuefacción).
  • El cambio directo entre el estado sólido y el estado gaseoso (sin pasar por el estado líquido) se conoce, en ambos sentidos, como sublimación, distinguiéndose: sublimación progresiva (el salto de sólido a gas) y sublimación regresiva o inversa (o condensación de gas a sólido).
Durante las transiciones la temperatura no varía, ya que todo el intercambio energético está vinculado al paso de un estado a otro. En el caso de la fusión, la temperatura a la que transcurre se denomina punto de fusión (en el que coexisten en equilibrio el sólido y el líquido), que es característico de cada sustancia (o mezcla de sustancias). Para la mayoría de las sustancias, entre las que se encuentra el agua, la temperatura de solidificación (congelación) coincide con la de fusión.
Por su parte, la vaporización puede producirse de dos maneras:
  • Por ebullición, cuando todas las partículas alcanzan la temperatura necesaria para que se produzca el cambio de estado, conocida como punto de ebullición y que, como en la fusión, se mantiene constante durante el cambio de estado. Es lo que ocurre, por ejemplo, cuando calentamos agua hasta que comienza a hervir.
  • Por evaporación, cuando solo una parte de las partículas, generalmente superficiales, son capaces de escapar al estado gaseoso. Este tipo de vaporización tiene lugar a temperaturas inferiores a la de ebullición y es responsable, por ejemplo, de que los charcos se evaporen o se seque la ropa húmeda.
vaporizacion-ebullicion.png
En algunas sustancias, como el yodo o la naftalina, se observa que el paso a estado gaseoso se produce directamente desde el estado sólido, sin pasar por el estado líquido. Esta “evaporación” desde el estado sólido es lo que se conoce como sublimación, y la temperatura a la cual ocurre se denomina punto de sublimación.
Puntos-fusion-ebullicion
Puntos de fusión y ebullición de algunas sustancias comunes
La representación gráfica de la temperatura de una sustancia o sistema con respecto al tiempo conduce a las gráficas de calentamiento o enfriamiento en las que se visualizan perfectamente los cambios de estado y las variaciones de temperatura entre ellos:
Grafica-calentamiento
Gráfica de calentamiento de una sustancia inicialmente sólida que se funde a 17 ºC y entra en ebullición a 115 ºC.
Grafica-enfriamiento
Gráfica de enfriamiento de un gas que condensa a 78 ºC y se congela a -15 ºC.

CUESTIÓN RESUELTA

Ejercicio-resuelto-cambio-de-estado-cuestión

VÍDEO RECOMENDADO: EXPERIENCIAS DE CAMBIOS DE ESTADO

sábado, 4 de marzo de 2017

Semana del 6 al 10 Marzo 2017

2.3 Temperatura y sus escalas de medición.






La temperatura

La Temperatura es una propiedad de la materia que está relacionada con la sensación de calor o frío que se siente en contacto con ella. Cuando tocamos un cuerpo que está a menos temperatura que el nuestro sentimos una sensación de frío, y al revés de calor. Sin embargo, aunque tengan una estrecha relación, no debemos confundir la temperatura con el calor.
Cuando dos cuerpos, que se encuentran a distinta temperatura, se ponen en contacto, se produce una transferencia de energía, en forma de calor, desde el cuerpo caliente al frío, esto ocurre hasta que las temperaturas de ambos cuerpos se igualan. En este sentido, la temperatura es un indicador de la dirección que toma la energía en su tránsito de unos cuerpos a otros.
La medida
El instrumento utilizado habitualmente para medir la temperatura es el termómetro. Los termómetros de líquido encerrado en vidrio son los más populares; se basan en la propiedad que tiene el mercurio, y otras sustancias (alcohol coloreado, etc.), de dilatarse cuando aumenta la temperatura. El líquido se aloja en una burbuja -bulbo- conectada a un capilar (tubo muy fino). Cuando la temperatura aumenta, el líquido se expande por el capilar, así, pequeñas variaciones de su volumen resultan claramente visibles.
Escalas
Actualmente se utilizan tres escalas para medir al temperatura, la escala Celsius es la que todos estamos acostumbrados a usar, la Fahrenheit se usa en los países anglosajones y la escala Kelvinde uso científico.


NombreSímboloTemperaturas de referenciaEquivalencia
Escala CelsiusºCPuntos de congelación (0ºC) y ebullición del agua (100ºC)
Escala FahrenhitºFPunto de congelación de una mezcla anticongelante de agua y sal y temperatura del cuerpo humano.ºF = 1,8 ºC + 32
Escala KelvinKCero absoluto (temperatura más baja posible) y punto triple del agua.K = ºC + 273


Experimento interactivo:
Para realizar este experimento ve a la liga  de enlace.


Actividad: Medir las temperaturas de fusión y ebullición del agua en las distintas escalas. Enciende el mechero pulsando el botón "Encender", para hacer hervir el agua e introduce el termómetro en los vasos (arrastrándolo con el ratón) para medir las temperaturas. Elige la escala del termómetro arrastrando el deslizador.
1. Escala Celsius:
    Temperatura de fusión del agua:  ºC. Temperatura de ebullición:  ºC 
2. Escala Fahrenheit:
    Temperatura de fusión del agua:  ºF. Temperatura de ebullición:  ºF 
3. Escala Kelvin:
    Temperatura de fusión del agua:  K. Temperatura de ebullición:  K 

Para tener en cuenta: La temperatura de fusión (a la que una sustancia cambia del estado sólido al líquido) y la temperatura de ebullición (a la que se forman burbujas de vapor en el interior de un líquido) son otras dos propiedades características de las sustancias que, al igual que la densidad, son muy útiles para su identificación.







Niños felices, escuela feliz, mundo feliz