domingo, 19 de junio de 2016

Semana del 20 al 23 Junio 2016

Manifestaciones de energía: electricidad y radiación electromagnética

29/03/2012 10:27 2 Comentarios Lectura: 1 min (255 palabras)
La energía puede originar o dar existencia a un trabajo. La energía se transforma y manifiesta de diferentes formas, en esta ocasión veremos la manifestación de la energía en la electricidad y radiación electromagnética.
Electricidad: la electricidad es una manifestación de la energía porque es un poder que da existencia a un trabajo. Gracias a la electricidad funcionan los aparatos modernos. La electricidad es la fuerza que actúa entre protones y electrones (componentes del átomo). En una planta eléctrica se genera una circulación de electrones que viajan a través de cables para llegar a nuestra casa; de esta manera podemos enchufar un aparato a la corriente eléctrica para que dicho aparato funcione y trabaje.
Hay electricidad de corriente continua (pilas) y de corriente alterna (red eléctrica). La posibilidad de generar y transportar la electricidad provocó un cambio en la sociedad. La electricidad permite la calidad de vida que tenemos en la actualidad. Imagina un día sin electricidad ¿cuáles aparatos serían inservibles?
Radiación electromagnética: es la emisión de fotones responsables de la interacción electromagnética. La luz es una radiación electromagnética, al igual que la radio. El teléfono celular, el microondas, el tostador, entre otros aparatos eléctricos, emiten radiaciones electromagnéticas. La radiación electromagnética tiene diversas longitudes de onda. El término radiación se ha asociado con desastres radioactivos, pero no toda la radiación es dañina, de hecho muchas de las comodidades que tenemos hoy en día, emiten radiaciones electromagnéticas.


lll

domingo, 12 de junio de 2016

Semana del 13 al 17 de Junio 2016













ANTES de seguir narrando el desarrollo de la electricidad y el magnetismo, haremos otro paréntesis para entender el contexto en que se hicieron los descubrimientos cruciales de Maxwell. Necesitaremos entender qué es lo que se sabía a mediados del siglo XIX sobre la naturaleza de la luz.
Desde la antigüedad el hombre se preguntó qué es la luz. Esta cuestión dio lugar a una serie de problemas muy sutiles.
El italiano Galileo Galilei (1564-1642) ya sabía que un rayo de luz se propaga en línea recta y que, si su velocidad es finita debería tener un valor muy grande. En 1675 el danés Olaf Roemer, al observar eclipses de las lunas del planeta Júpiter hizo la primera medición de la velocidad de la luz y obtuvo el extraordinario número de alrededor de 300 000 km/s. En esa época también se conocían otros fenómenos que experimentaba la luz: la reflexión y la refracción.
La reflexión ocurre cuando un rayo de luz llega a una superficie que está pulida y se regresa. Si es el ángulo con que incide el rayo sobre la superficie, como se muestra en la figura 18, entonces resulta que el rayo reflejado forma un ángulo r de reflexión igual al incidente i. Este resultado se llama la ley de la reflexión. Un ejemplo bien conocido ocurre con un espejo.
Figura 18. Cuando la luz incide sobre una superficie pulida se refleja.
Un rayo de luz experimenta refracción al pasar de un medio a otro. Por ejemplo, cuando un rayo de luz está en el aire y llega a una superficie de agua, una parte de la luz se transmite en el agua.
Sin embargo, el rayo dentro del agua cambia la dirección de su propagación. Este fenómeno constituye la refracción. En ella, los ángulos de incidencia i y de refracción j(Figura 19) no son iguales. La relación entre estos ángulos depende de las características de las dos sustancias en que se propagan los rayos. La ley de Snell explica el comportamiento del rayo transmitido, en términos del rayo incidente y de propiedades de los medios. Por este fenómeno, cuando un lápiz está metido parcialmente dentro de un vaso de agua lo vemos como si estuviera partido.
Figura 19. Cuando la luz pasa de un medio a otro cambia su dirección de propagación, se dice que se refracta. 
En el siglo XVII los principales fenómenos conocidos de la luz eran la reflexión y la refracción. El gran científico inglés Isaac Newton (1642-1727) propuso un modelo para explicar el comportamiento de la luz. Supuso que la luz estaba compuesta de corpúsculos diminutos que se movían con cierta velocidad. Así explicó la reflexión simplemente como un rebote de las pequeñísimas partículas al chocar con una superficie que separa a dos medios. Además, con la hipótesis corpuscular de la luz, dio argumentos que explicaban por qué la luz cambia su dirección, debido a que al pasar los corpúsculos de un medio a otro cambian su velocidad.
Una propiedad muy importante de la luz es el color. Newton descubrió que la luz blanca estaba compuesta en realidad de varios colores. Hizo un sencillo experimento en el que una luz blanca, por ejemplo la del Sol, se hacía pasar a través de un prisma. Se dio cuenta de que la luz que emergía del otro lado del prisma estaba compuesta de rayos que tenían los colores del arco iris. Así descubrió que al atravesar el prisma, un rayo de luz de un color se desvía, o refracta, de manera distinta a un rayo de otro color.
Otro fenómeno que estudió Newton fue el siguiente: cuando un haz de luz blanca incide sobre una burbuja de jabón se forman regiones oscuras intercaladas con regiones iluminadas. Esto mismo ocurre cuando un haz incide sobre un vidrio esférico que se coloca sobre una placa plana de vidrio, dejando una capa de aire muy delgada entre ellos. Se forma un patrón de luz como el mostrado en la figura 20. Newton hizo mediciones muy precisas en las que relacionó los anchos de las regiones, tanto iluminadas como oscuras, con la curvatura del vidrio. Encontró que para cada color se tenía una región iluminada de un ancho distinto. Newton llegó la conclusión de que, hablando en terminología moderna, había algo periódico en el comportamiento de la luz, pero no pudo determinar su naturaleza.
Figura 20. Anillos de Newton.
Otro fenómeno luminoso que Newton llegó a conocer, la llamada difracción de la luz, fue descubierto en 1665 por el italiano F. M. Grimaldi. Éste hizo una pequeñísima perforación en la persiana de su ventana, que daba al Sol. En la trayectoria de la luz que pasó, colocó un pequeño objeto y observó con detenimiento la sombra que proyectaba sobre una pantalla. Encontró que el extremo de la sombra no era nítido sino difuso, y que además se formaban bandas de color en donde se alternaban regiones iluminadas y oscuras. De otras observaciones que hizo, Grimaldi llegó a la conclusión de que la luz "se voltea" alrededor de los bordes de obstáculos opacos iluminados por una fuente muy pequeña de luz.
La difracción fue otro fenómeno que reforzó la idea de Newton de que había algo periódico en el comportamiento de la luz. Sin embargo, estas periodicidades no le hicieron cambiar su idea de que la luz estaba compuesta de corpúsculos, pues creyó que las periodicidades eran efectos secundarios causados por los distintos medios con los que la luz entraba en contacto, más que una propiedad intrínseca de la luz.
El prestigio inmenso de que gozó Newton hizo que los científicos de todo el siglo XVIII aceptaran el modelo corpuscular de la luz.
A principios del siglo XIX el físico inglés Thomas Young (1773- 1829) inició un trabajo de análisis y experimentación muy amplio con rayos de luz. Llegó a la conclusión de que todos los fenómenos luminosos conocidos se podían explicar basándose en la idea de que la luz estaba compuesta por ondas. Explicó que los anillos de Newton se formaban por la interferencia de ondas. Así, la banda oscura se debía a que en ese lugar dos ondas se componían destructivamente: una onda tenía un signo y otra tenía el signo inverso (Figura 21), mientras que en otro lugar ocurría que las dos ondas tenían los mismos signos, o sea, se componían constructivamente y daban lugar a una zona muy iluminada (Figura 22). Comprobó sus ideas haciendo diversos experimentos. Uno de los más notables fue la interferencia con dos rendijas. Este consiste en hacer incidir un haz de luz sobre una pantalla opaca (Figura 23) con una rendija. La luz que pasa por esta rendija se hace incidir sobre otra pantalla que tiene dos rendijas. En una tercera pantalla se forma un patrón como el mostrado en la figura 24, donde vemos bandas iluminadas alternándose con bandas oscuras. La explicación dada con respecto a las figuras 21 y 22 se aplica a este patrón observado.
Figura 21. Dos ondas fuera de fase interfieren destructivamente, creando zonas oscuras. 
Figura 22. Dos ondas en fase interfieren constructivamente, creando zonas iluminadas. 
Figura 23. Arreglo experimental de Young para estudiar la interferencia de la luz que pasa por la placa con dos rendijas.
Figura 24. Fotografía del patrón de interferencia obrenido por Young.
Sin embargo, Young no pudo explicar satisfactoriamente el fenómeno de difracción con base en la hipótesis ondulatoria.
Las ideas de Young fueron atacadas fuertemente e ignoradas durante más de una década. Fueron retomadas en Francia por Augustin Fresnel (1 78 827), quien mejoró la concepción ondulatoria de la luz y pudo explicar el fenómeno de difracción.
En Francia se generó una gran controversia sobre la hipótesis de que la luz era una onda. El famoso científico S. D. Poisson, con su gran dominio de las matemáticas, hizo diversos cálculos basados en la teoría de Fresnel y concluyó que tenía una consecuencia que le pareció absurda. Según Poisson, si se hacía caso a esta teoría, en ciertas circunstancias bien determinadas, cuando se proyectara un haz de luz, en el centro de la sombra de un disco opaco circular, ¡debía haber una zona iluminada! (Figura 25). Decía que esto no era posible ya que iba contra el sentido común. Preocupado, Fresnel realizó un experimento en las mismas condiciones de los cálculos de Poisson y observó, para su sorpresa, que efectivamente en el centro de la sombra se formaba una región iluminada. Esto se muestra en la figura 26.
Figura 25. Poisson hizo ver que, según la teoría ondulatoria de la luz, en ciertas condiciones bien determinadas debería haber una zona iluminada en el centro de la sombra de un disco opaco. 

Figura 26. Resultado del experimento de Fresnel en las condiciones propuestas por Poisson. En el centro de la sombra sí hay una región iluminada. Nótese que también hay una zona iluminada en el centro del alambre que sostiene el disco. En esta fotografía se percibe además el patrón de difracción en los bordes de la sombra.
Este resultado causó sensación e hizo que los principales científicos aceptaran la hipótesis ondulatoria de la luz. Más tarde se descubrieron otros tipos de fenómenos luminosos, como la polarización y la dispersión, que solamente se pudieron explicar con base en la hipótesis ondulatoria. Hacia los años de la década de 1830 la hipótesis de Newton sobre la naturaleza corpuscular de la luz ya había sido prácticamente abandonada en favor de la ondulatoria.
Sin embargo, una cuestión crucial todavía quedaba sin resolver. Cuando hay una onda, algo es lo que ondula. En el ejemplo de la cuerda, ésta era la que ondulaba: en el caso del estanque, el agua es la que ondula, y cuando se propaga una onda sonora, el aire es el que ondula. La cuestión que no se pudo responder es: en el caso de la luz, ¿qué es lo que ondula? Como veremos en el próximo capítulo este problema fue resuelto, sin proponérselo, por Maxwell.


Niños felices, escuela feliz, mundo feliz